If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-16t+40=10
We move all terms to the left:
2t^2-16t+40-(10)=0
We add all the numbers together, and all the variables
2t^2-16t+30=0
a = 2; b = -16; c = +30;
Δ = b2-4ac
Δ = -162-4·2·30
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4}{2*2}=\frac{12}{4} =3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4}{2*2}=\frac{20}{4} =5 $
| y-6=30y | | 6x+1+23=90 | | 6/h−1=−3 | | 3x+8+15+20=90 | | 4/x+1=0 | | 10k+44=10k-10 | | 2(1/3x+4)-1=4/3×-3+× | | 2t^2-16t+40=30 | | 3x+(-7=2 | | 4x+2+42=180 | | 2|2x+2=2×2 | | x*1.07=200 | | x+3x=81 | | 3x=75-2 | | 1.7–0.3m=2+1.7m | | 8x+34-7=43 | | (x/2)-1)=206 | | 6x+3=7+5x | | c-8-8=-12 | | -5(y-2)+6y=-7+4 | | -2x+4=-3x+14 | | 5/17=y/7 | | 3.2-5x=3.7 | | -5(y-2)+6y=7+4 | | 5g-5=3 | | 241=7-u | | 5x-6=3(x-) | | 10x-25=5x+15 | | 9=3+w | | 56=(-6p-10) | | 64+3x-4+x=180 | | 20x+3-7x=102 |